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Abstract. The probabilistic cellular automata approach i s  used to es!imate the relaxation 
of the magnetization in the quenched, site-diluted classical XY model. If is found that the 
relaxation can be described by an exponential law in two and three dimensions. For the 
initial time i t  has the Debye character. From the obtained curves an analytic expression 
is deduced which enables the phase diagram to be drawn in three dimensions. In two 
dimensions the final stage of the relaxation is always a non-magnetic one while in three 
dimensions it depends on the concentration of spins. 

1. Introduction 

Although the classical X Y  model with many modifications has been actively investi- 
gated in recent years (see e.g. Ariosa el  al 1988, Berge el al 1986, Gerling and Landau 
1983) the diluted version of the model is less popular. To the best of our knowledge 
the paper by Reeve and Betts (1975) is the only one. The authors, using high temperature 
series expansions, derived inter alia its phase diagram. 

T h e  aim of this paper is to estimate the relaxation of the magnetization in a 
site-diluted classical X Y  model in ZD and 3 ~ .  We shall use the probabilistic cellular 
automata approach. For technical reasons (lack of powerful computers) we do not 
aim at finding critical exponents nor at establishing precise values for the relaxation 
constants or critical concentrations. Rather, we want to show that having more computer 
power such things can, and probably should, be done. 

2. The model 

we consider a system of n ciassicai .YY spins iocated ranaomiy on sites of a ZD or 
3~ cubic lattice. The concentration of spins is x. Once put in place the spins remain 
in their positions throughout the process. Hence we have the quenched site-diluted 
case. The spins may he rotated either by magnetic interactions, I, to nearest neighbours, 
or by random interactions with a continuous medium filling up the lattice. The latter 
interactions simulate thermal contact of the spins with a heat bath. The medium is 

similar approach using the Monte Carlo technique has been employed by Miyashita 
et al (1978). For time t < O  the system is in thermal equilibrium and an infinitely strong 
homogeneous external magnetic field is applied aligning all spins. At I = 0 the field is 
switched off and the relaxation to a new equilibrium state begins. 
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The spin at a site i = ( 1 , .  . . , N )  is characterized by an angle a , ( t )  it makes with a 
fixed arbitrary direction. The potential of magnetic interactions is 

V(t)=-J  z S , S ~  cos[ai(t)-aj(t)] (1) 
0. j )  

where s,(=O, 1)  is the site occupation variable. The time evolution of the spin is given 
(we are looking for stationary solutions) by the Langevin equation 

4 

6=1 
pd,aj(t)= -J 1 sitR sin[ai(f)-aitp(t)]+Ai(t)  ( 2 )  

where q is the number of nearest neighbours. The terms on the RHS represent the 
systematic (magnetic) and random (thermal) forces acting on the spin at site i. h ( t )  
is the time derivative of the Wiener process, W (  T), with 

(A( i ) A (  1 ' ) )  =ZkTps(f - t ' ) .  (3) 

For discrete time (2) can he written as 

a, ( f  +At)  = a j ( t )  -p-'J A t  sin[aj(t) - aj+,(t)]+p-'  A W ; ( I ) .  (4) 

A W represents white noise and can he written as (Rtsihois and de Leener 1977) 

AW.(t) = z,(t) ( 5 )  

where z (  1 )  are computer generated random variables with standard normal distribution. 
Scaling time to f = ipJ-' (Gerling and Landau 1983) (4) becomes 

aj(f + A t )  = a;(f) - A t  1 si+* sin[a;(t) - a j + s ( t ) ] + m  zj(f).  (6) 

T =  kTIJ is the reduced temperature and Af is the time increment used in evaluation 
of (6). It should be small to ensure good accuracy, but not too small if, with restricted 
computer power, we want to reach larger times. In our case for At=0.04pJ-', we 
iterated until t = 50pJ-', using an IBM AT microcomputer. 

For a given concentration, x, of spins their positions on the lattice are randomly 
chosen, and their time evolution is calculated from (6). At each time step the magnetiz- 
ation, m ( t ) ,  is evaluated from 

m ( t ) = N - l x c o s a , ( t ) .  (7) 

This is then averaged over different initial localizations of spins 

W t )  = ( m ( 0 ) .  (8 )  

To speed up the computer calculations we have used discrete angles a;, with a 
typical division of 2 ~ / 1 0 0 0 .  Therefore we were able to use mainly integer number 
arithmetics. 

The equation of motion (6) depends, for a chosen time increment, on three 
parameters-dimensionality ofthe system, concentration of spins, x = Z si, and reduced 
temperature T. The relaxation curves following from (6) are shown, for some representa- 
tive values of the parameters, in figure 1.  
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Figure 1. Relaxation curves in reduced lime mils  I = p J - ' :  ( a )  m, x =0.6; ( b )  )D, x = 0.4. 
( e )  2D. x=0.6. 
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3. Results 

It is possible, having several sets of curves as in figure 1, to find an analytic formula 
for relaxation of the magnetization which would fit the calculated curves (see figure 
2). It seems that in 3~ the initial relaxation behaves in a different way than that for 
larger times, although both seem to have an exponential character (see figure 3). We 
assume that 
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Figure 3. Plot of M=ln(-ln(M(r)/M(O))), in arbitrary units, against In t showing the 
exponential character of the CA curves. JD,  x=O.6. Upper curves r = O . l ,  lower curves 
r = O S . ( o )  InitialstageZs rslo;(b)longertimes 10s 1~50,Theerrorbarsareconfidence 
limits estimated from the observed scatter after I O  averaging. 
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where a and b are functions of x and T. In 3~ we get the short time estimate ( t  < lOpJ-') 

a = -0.16+0.42x-0.29x2+(2.79 - 8 . 6 3 ~  +7.52x2)7- (2.26-8.77~ + 8 . 1 5 ~ ' ) ~ ~  (10) 

(1.2 - 7 . 2 5 ~  + 1 4 . 3 ~ ' ) ~  
b = l -  = 1 -B. 

T*+( 1 -5.75X+ 1 1.56X2)T+0.23 - x + x 2  

The initial relaxation may then be approximated by 

M(t)ocexp(-at)(l -at" +. . , ). (12) 

Hence at the early time steps the relaxation has a Debye-type character with the 
constant a given by (IO). For t >  IOpJ-' we have 

0.02 0.136 a=-+- 
x4.5 x2.7 T 2  

Since a > O  the asymptotic behaviour of M ( f )  changes when b changes sign: for t + m  
and b > 0 exp(-atb)+ 0 indicating relaxation to a non-magnetic state, while for f + CC 
and b<Oexp(-atb)+ 1 and the final state is magnetized. It is therefore possible to 
use the equation b(x ,  T )  = O  to estimate the critical temperature, T ~ ,  for the transition 
to a magnetic state as a function of x:  

T,  = 0.5(8x3+J64x6+0.25(4.18 - 2 3 ~ ~ ) ) .  (15) 

The threshold concentration, below which T~ = 0, is x, = 0.321 and agrees well with the 
estimation of Reeve and Betts (1975). The phase diagram is shown in figure 4. 

In ZD, assuming the same exponential behaviour, equation (91, we get 

a = 0 . 0 2 7 5 ~ ~ ~ ~ ~ + ( 9 . 2 8 ~ ~ + 0 . 5 5 8 ) ~ ~ ~ ~  (16) 

(0.158 - 1 .495~  +0.575x2)7 
T~ - (0.722 - 2.08X - 0.1X2)~+0.076+0.338X -o.71X2' b = l +  (17) 

Again the initial relaxation is given by (12) but with different values of Q3 and a. More 
specifically, a2,> a, ,  while BZD< B,,, which indicates faster initial relaxation in ZD. 

x 

Figure 4. Phase diagram in ID. 
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Here, as expected, T~ = 0 for all concentrations and the system relaxes always to a 

The agreement between the cellular automata ( 2 )  and ‘analytic’ (y) curves were 
non-magnetic state. 

additionally checked by calculating their correlation coefficient 

r = g z y ( ~ z x ~ y y ) 1 ’ 2  (18) 

where 

mzy = (V-(W). (19) 

The obtained values of r are higher for larger concentrations. At x = 0.6, r = 0.896 for 
T = 0.1 and r = 0.892 for T = 0.5 while at x = 0.2, r = 0.875 for T = 0.1 and r = 0.617 for 
T = 0.5. 

4. Concluding remarks 

We have presented relaxation curves of the initially magnetized state in ZD and 3~ 

obtained via the cellular automata approach. From these curves we have ‘guessed’ the 
analytic formulae from which the phase diagram of figure 4 was constructed. It agrees 
with the one obtained earlier by Reeve and Betts (1975), giving a similar value for x, 
and supporting the conjecture that T J X )  intersects the x axis with a finite slope. There 
is however a difference-our curve is concave while theirs was rather a straight line. 

The very interesting question of finding the concentration threshold in ZD at which 
the Kosterlitz-Thouless transition appears, cannot be answered by the present approach 
since we have calculated only the magnetization. 

For x < xc the relaxation is fast and therefore it is better described by (9) with a 
and b found from (10) and ( 1 1 )  rather than from (13) and (14). 

Our system is macroscopically homogeneous since the dilution is random and there 
is no correlation among the vacancies. Initially all spins were aligned by the external 
field and then left to relax in the (macroscopically) same way. Therefore there are no 
propagating modes. A similar situation is encountered in the physics of phonons (see 
e.g. Petru 1987). 

We had to consider small samples; lo3 in 30 and 312 in ZD. Averaging was typically 
over 30 initial configurations-more for small x where the. scatter was larger and less 
for larger x. The reason for such drastic limitations was the lack of fast computers. 
Increasing the computation time on our IBM AT computer by, say, ten hours, which 
we did in some cases for checking, did not improve drastically the quality of the results. 
More specifically, increasing the size of our system from lo3 to l Z 3  changed the value 
of M(r = 10) by less than 0.5%. The change when the averaging was increased from 
10 to 20 (for x = 0.6 and T = 0.5, which is a typical value with medium scatter) was 
less than 2%. The difference was even smaller when the time step, At, was decreased 
fourfold, to AI =O.OlpJ-’. Finally, increasing twice the division of the angle LY produced 
results identical to the previous ones up to four significant digits. Hence we decided 
to leave them at this level. It should however be stressed that our M ( t )  curves are not 
smooth, the analytic equations are not unique and therefore (15) is only approximate. 
We hope this shows a way to calculate the relaxation properties of the diluted XY 
model. 



Relaxation in the diluted X Y  model 1259 

Acknowledgments 

I am greatly indebted to Dr M Dudek for many discussions and to Mr Z Koza for 
helpful comments. The work was supported by a grant from the Institute for Low 
Temperatures and Structure Research of the Polish Academy of Sciences in Wroctaw. 

References 

Ariasa D, Vallat A and Beck H 1988 Helv. Phyr. Aero 61 244-7 
Berge B, Diep H T, Gharali A and Lallemand P 1986 Phys. Re". B 34 3177-84 
Gerling R W and Landau D P 1983 Phys. Re". B 37 6092-9 
Miyashita S, Nishimori H, Kuroda A and Suruki M 1978 Fmz. Theor. Phys. 60 1669-85 
Petru Z K 1987 Physics qfPhonons, pI.0~. XXIII Korpncz Winrer School qf Theorerica1 Physics (Leelure Nore3 

Reeve J S and Betts D D 1975 J. Phys. C: Solid Srore Phys. 8 2642-54 
Risiboir P and de Leener M 1977 Clossicol Kinetic Theory o/Fluids (New York: Wiley-Interscience) 

in Physics 285) ed T Pasrkiewicz (Berlin: Springer) p 467 


